В этой статье представлена практическая схема, в которой для усиления малых постоянных напряжений с высокой линейностью и превосходной помехоустойчивостью используется синхронное детектирование. Такие схемы необходимы при измерениях сигналов токовых шунтов, тензодатчиков, термопар и т. д. Принцип синхронного детектирования объясняется во многих книгах, статьях и руководствах по эксплуатации. Для тех, кто не знаком с этой темой, хорошей отправной точкой будет [1].
Блок-схема усилителя показана на Рисунке 1. Он обеспечивает фиксированное усиление в 1000 раз, разделенное между инструментальным усилителем, регулируемым неинвертирующим усилителем и фильтром нижних частот. Коммутаторы полярности и инструментальный усилитель преобразуют входное постоянное напряжение в биполярные прямоугольные импульсы, что позволяет применять метод синхронного детектирования.
Рисунок 1. | Блок-схема усилителя. |
На Рисунке 2 представлена схема первых четырех блоков блок-схемы. Высококачественные операционные усилители обеспечивают сверхнизкое напряжение смещения, очень низкий уровень шума и скорость нарастания 20 В/мкс. Допустимое отклонение сопротивлений всех резисторов составляет 1%, но резисторы с R1 по R6 должны быть подобраны в пары с точностью 0.05%.
Рисунок 2. | Принципиальная схема части усилителя (фильтр представлен на отдельной схеме). |
На Рисунке 3 показана схема фильтра. Это каноническая конструкция 4-полюсного фильтра нижних частот Саллена-Кея с коэффициентом усиления по постоянному току 2.576 [2], частотой среза 1 Гц и крутизной спада –80 дБ/дек.
Рисунок 3. | Принципиальная схема фильтра нижних частот. |
Генератор прямоугольных импульсов сделан на основе микросхемы 74HC4060. Частота установлена равной 577 Гц – простому числу, примерно равноудаленному от ближайших гармоник 50 Гц и 60 Гц.
Устройство, собранное на печатной плате, показано на Рисунке 4. Двухсторонняя плата имеет размеры 78 мм × 62 мм. Все аналоговые земли соединены отдельными печатными проводниками в точке подключения земли источника питания. Все измерения выполнялись относительно этой общей точки.
Рисунок 4. | Усилитель на двухсторонней печатной плате. |
Характеристики схемы оценивались с помощью самодельного калибратора напряжения [3] и 6.5-разрядного мультиметра. Для увеличения разрешения по входному напряжению между двумя платами был установлен делитель 100:1.
Передаточная функция VBF, аппроксимированная линией наилучшего соответствия, имеет вид:
На Рисунке 5 изображены отклонения экспериментальных результатов от линии наилучшего соответствия в зависимости от выходного напряжения. Ошибка находилась в пределах между +1 мВ и –1 мВ. Относительно напряжения полной шкалы 10 В это отличный результат. Смещение передаточной функции на 13 мВ может быть легко устранено аппаратно или программными средствами, если схема подключена к микроконтроллеру.
Рисунок 5. | Отклонения экспериментальных результатов от линии наилучшего соответствия находятся в диапазоне ±1 мВ. |
В заключение перечислим некоторые меры, которые могут помочь снизить стоимость и улучшить характеристики устройства.
Провода, соединяющие источник сигнала с платой, должны быть как можно короче.
Для U3 можно использовать более дешевый операционный усилитель с менее экстремальными значениями напряжения смещения.
Если возможно, фильтр можно заменить 2-полюсным. Второй операционный усилитель в корпусе можно использовать для компенсации смещения передаточной функции.
Использование компонентов для печатного монтажа позволит уменьшить размеры и стоимость печатной платы.